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There are two separate mechanisms which can generate a boundary flow in a non- 
rotating, stratified fluid. The Phillips-Wunsch boundary flow arises in a stratified, 
quiescent fluid along a sloping boundary. Isopycnals are deflected from the 
horizontal in order to  satisfy the zero normal mass flux condition a t  the boundary; 
this produces a horizontal density gradient which drives a boundary flow. The second 
mechanism arises when there is an independently generated turbulent boundary 
layer a t  the wall such that the eddy diffusion coefficients decay away from the wall ; 
if the vertical density gradient is non-uniform the greater eddy diffusion coefficients 
near the wall result in a greater accumulation or diminution of density near the wall. 
This produces a horizontal density gradient which drives a boundary flow, even a t  
a vertical wall. The turbulent Phillips-Wunsch flow, in which there is a vigorous 
recirculation in the boundary layer, develops if the wall is sloping. This recirculation 
produces an additional dispersive mass flux along the wall, which also generates a net 
volume flux along the wall if the density gradient is non-uniform. 

We investigate the effect of these boundary flows upon the mixing of the fluid in 
the interior of a closed vessel. The mixing in the interior fluid resulting from the 
laminar Phillips-Wunsch-driven boundary flow is governed by 

pt = 9 @z A)z .  

The turbulence-driven boundary flow mixes the interior fluid according to 

p t - A  - l ( r ,pzl&da) , .  

Here p is the density, K, and K, are the far-field (molecular) and effective boundary 
(eddy) diffusivities, including the dispersion, A is the cross-sectional area of the basin 
and $6ds is the cross-sectional area of the boundary layer. The interior fluid is only 
mixed significantly faster than the rate of molecular diffusion if there is a turbulent 
boundary layer a t  the sidewalls of the containing vessel which either (i) varies in 
intensity with depth in the vessel or (ii) is mixing a non-uniform density gradient. 
These mixing phenomena are consistent with published experimental data and we 
consider the effect of such mixing in the ocean. 

1. Introduction 
Recently, there has been much interest in the problem of boundary-driven mixing 

to investigate whether flows generated at fluid boundaries can enhance the mixing of 
an otherwise quiescent fluid. Such boundary-driven mixing was first suggested by 

t Present address : The Institute of Theoretical Geophysics, Department of Applied Mathematics 
and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK. 



626 A .  M'. Woods 

Munk (1966) as a potentially important mechanism in the complex process of deep 
ocean mixing. Since then, therc have been several studies describing particular 
boundary mixing processes, and we briefly outline the history of these investigations 
below. In 1970, Phillips and Wunsch independently realized that a boundary current 
occurs in a stratified fluid a t  a sloping, insulating wall; this is because the isopycnals 
must be perpendicular to the wall and thereforc horizontal density gradients arise 
near the wall. We will refer to this type of flow as the Phillips-Wunsch flow; it is a 
molecular process. Thorpe (1987) extended this solution to apply to a rotating fluid, 
and showed that in addition to the boundary current, an interior geostrophic flow, 
uniquely determined by the Phillips-Wunsch flow, is established parallel to the wall. 

Armi (1978) rekindled interest in the subject of boundary mixing with some 
observations of mixing, caused by topography on the Sohm abyssal plain, north-east 
of Bermuda. In these observations, the vertical density profile had a step-like 
structure, which was interpreted as a record of the increased mixing of the fluid a t  
some earlier time when it passed by topography. This work motivated several 
investigations into the effects of boundary-driving mixing ; however, in most of the 
subsequent theoretical and experimental studies of mixing the fluid is assumed to 
have no large-scale organized motion away from the boundaries ; the only large-scale, 
organized motions present are those induced by the boundary. This simplification 
allows the effect, of thc boundary-generated flows upon the mixing of the ocean 
interior to be studied in isolation and their importance estimated. Boundary- 
generated flows may be important in the mixing of a number of deep ocean basins, 
for example the Santa Monica Basin (Lcdwell, Watson & Broecker 1986) in which the 
effects of meso-scale eddies and other currents are not as strong as in the open ocean. 
Ultimately, such models of the mixing caused by boundary-generated flows will be 
synthesized with models of mixing in currents passing beside the boundaries. 
Boundary-generated flows may be induced either ( i )  by the Phillips-Wunsch 
mechanism which occurs essentially because the boundary is sloping as explained 
above (Phillips 1970; Wunsch 1970), or (ii)  because there is a turbulent boundary 
layer a t  the boundary, which mixes the fluid near the boundary more rapidly than 
in the interior. In  a non-uniform density gradient, this process results in a larger rate 
of accumulation or diminution of the diffusing component near the wall as compared 
to the interior of the fluid. This produces horizontal density gradients which drive a 
boundary flow (Wunsch 1970; Ivey & Corcos 1982; Phillips, Shyu & Salmun 1986). 
Such turbulent boundary layers might be produced, for example, by internal waves 
interacting with the boundary (Eriksen 1985; Garrett & Gilbert 1988). Several 
analogue laboratory experiments, which have been undertaken to investigate 
boundary-driven mixing, have used oscillating grids to  produce turbulent boundary 
layers near the sidewalls (Ivey & Corcos 1982; Thorpe 1982; Ivey 1 9 8 7 ~ ;  Phillips 
et al. 1986; Salmun & Phillips 1990). 

Ivey &, Corcos (1982) and Thorpe (1982) both carried out experiments in which 
they investigated the mixing caused by the presence of a grid-generated turbulent 
boundary layer adjacent to a vertical wall in a stratified fluid. They both showed 
empirically that the net vertical mass flux of the diffusing component scales as the 
boundary-layer eddy diffusivity rather than the much smaller interior molecular 
diffusivity. Phillips et al. (1986) extended this work by investigating experimentally 
the mixing produced by a grid-generated turbulent boundary layer along a sloping 
wall; Salmun & Phillips (1990) recently continued this study by investigating the 
effect of varying the slope of the boundary. Ivey (1987 a )  conducted experiments in 
which a cylindrical body of fluid. with a turbulent, sidewall boundary layer, was 
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rotated. These later studies confirmed that the net vertical mass flux of the diffusing 
component scales as the boundary eddy diffusivity. 

Phillips et al. (1986) also presented a theoretical analysis of the turbulent boundary 
layer. They noticed that with large eddy diffusion coefficients near the boundary, the 
Phillips-Wunsch (1970) boundary flow becomes more intense, with a strong internal 
counter-flowing circulation developing near the boundary. Such an internal 
circulation leads to an alongslope turbulent dispersive mass flux, through a similar 
process to that described by Taylor (1954). Garrett (1990) investigated the turbulent 
boundary layer theory of Phillips et al. (1986) in more detail. He focused upon the 
case of a un i form density gradient and studied both the alongslope turbulent diffusive 
mass flux and the alongslope dispersive mass flux, which arise on a gently sloping 
boundary in the turbulent boundary layer. He showed that the total vertical mass 
flux equals the alongslope turbulent diffusive and dispersive mass fluxes; the 
alongslope dispersive flux is smaller than the cross-slope turbulent diffusive flux and 
so the net effect of the circulation is to lower the total vertical mass flux below that 
which would be produced by the purely turbulent diffusion acting on horizontal 
isopycnals. However, even though there is a turbulent mass flux along the boundary, 
Phillips et al. (1986) showed that in a uniformly stratified fluid, there is no increase 
in the volume flux along the boundary above that due to the molecular 
Phillips-Wunsch flow ; therefore, it does not induce a return flow in the interior fluid. 

Following Wunsch (1970) and Ivey & Corcos (1982), Phillips et a2. also noted that 
in a non-uniform, vertical density gradient the boundary-driven mixing does 
generate a net volume flux along a sloping boundary, in addition to the 
Phillips-Wunsch flow. This second boundary flow mechanism is produced by the 
mechanism (ii) described above when the alongslope turbulent diffusive and 
dispersive mass fluxes diverge ; it is a similar mechanism to that observed at a vertical 
wall in the experiments of Ivey & Corcos (1982) and Thorpe (1982). We develop the 
work of Garrett (1990) and show that in fact both the alongslope turbulent diffusive 
mass flux and the alongslope dispersive mass flux may be important, with the 
diffusive flux dominant at large slope angles. 

Most of the work cited above focused upon the details of the mixing in the 
boundary layer, and the boundary-layer flows associated with such mixing. Several 
authors have deduced values for the interior diffusity, Kint based on these boundary- 
flow analyses, following h m i  (1978), who suggested that Kint = KbAb/Aint, where 
Ab/Aint is the ratio of the area of the boundary layer to the whole basin and Kb is the 
boundary-layer eddy diffusivity. Given the importance of boundary mixing, it seems 
timely to analyse in detail the manner in which such boundary currents affect the 
mixing of the fluid in the interior of a basin, away from the boundary. This is the 
main object of this paper. If there is a net volume flux up the slope associated with 
the boundary mixing, then in a closed basin there will be an equal but opposite return 
flow in the interior of the basin. We use the expressions for the interior return flow 
to derive advection-diffusion equations for the mixing in the interior fluid when 
there is both laminar and turbulent boundary-layer flow. The two regimes of 
boundary-driven mixing are shown to predict vastly different mixing rates in the 
interior. I n  this way, we are able to predict the manner in which the interior density 
profile evolves ; the solutions we obtain are consistent with the published 
experimental data on boundary mixing. 

We have arranged the present paper as follows. In  $2 we review the laminar 
Phillips-Wunsch flow, deduce the bulk return flow in the interior of the fluid and 
derive the advection4iffusion equation describing the mixing of the interior $fluid. We 
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present some simple examples which identify the key novel features of such mixing 
of the interior. In $3,  we deduce that even with a turbulent boundary layer, the 
Phillips-Wunsch mechanism acting on a uniform density gradient cannot increase 
the rate of mixing of the interior beyond that timescale determined by the interior 
diffusivity; this is consistent with Thorpe (1987). We then contrast this with the 
situation in which the density gradient is nonlinear and there is a turbulent boundary 
layer. We present a local analysis for the turbulence-generated boundary flow at  a 
vertical wall, in $4, following the approach of Phillips et al. (1986). Next, we derive 
and analyse the advection-diffusion equation describing the interior mixing produced 
by this turbulencc-generated boundary flow. We show that this theory is consistent 
with the experiments of Ivey & Corcos (1982) and Thorpe (1982) and present some 
similarity solutions which elucidate the peculiar features of such mixing. Following 
Garrett (1990), we investigate both the diffusive and dispersive mass flux which 
develops in a sloping, turbulent boundary layer as a result of the recirculating 
boundary flow which develops. We show that when these mass fluxes diverge, the 
slope of the boundary determines whether the diffusive or dispersive mass flux 
dominates the net boundary-layer flow, and therefore the interior mixing. We 
conclude by investigating how such boundary-driven flows may affect the mixing of 
a constant source of fluid input a t  the bottom of a basin and discuss the relevance 
of these mixing phenomena in the oceanic context. In an Appendix, we present a 
simple bulk model of the turbulence-driven boundary flow along a vertical wall and 
suggest that in a rotating system a turbulencc-driven geostrophic zonal flow may 
develop in a similar fashion to that produced by the Phillips-Wunsch flow (Thorpe 
1987). 

2. Interior mixing driven by the Phillips-Wunsch flow 
I n  the present study we consider a non-rotating fluid in which one diffusing 

component determines the density ; all the processes we describe are related to single- 
component convection. The analogous problem in double-diffusive convection results 
in a quite different flow field (Turner 1979; Kerr 1989), but we do not discuss this 
here. 

Phillips (1970) and Wunsch ( 1970) studied the boundary-layer flow which develops 
along a sloping sidewall in a stratified fluid. The flow develops because of the 
boundary condition of zero normal mass flux at the wall ; this causes the isopycnals 
near the wall to deflect away from the horizontal thereby producing a horizontal 
density gradient and a flow. 

They showed that the volume flux through the boundary layer associated with this 
flow satisfies 

J:udr = K C O t e ,  (2.1) 

where the geometry of the system is shown in figure 1. This volume flux is purely a 
function of the slope of the wall and the molecular diffusivity, K,  but requires that 
the interior density gradient, i3po/az, be non-zero and approximately constant over 
a vertical scale of the same order as the boundary-layer width, S - (p sin2 O/Kp)-a.  
If the Prandtl number, V/K,  is large the boundary flow is stable. However, as 
mentioned by Phillips (1970), if the Prandtl number is very small, for example in a 
metallic system, then this boundary flow may become unstable. As 8+0,  the 
boundary layer becomes very wide and the theory breaks down. 
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FIGURE 1 .  Diagram defining the coordinate system for the analysis of the boundary flows. 

TBoundary layer 

FIGURE 2. Diagram showing the boundary-layer structure at the outer edge of a surface of 
revolution containing the fluid. 

Given the boundary volume flux, (2 .1 )  we calculate a new advection-diffusion 
equation governing the transport processes in the interior. Consider a vessel with 
sloping walls in which the radius of curvature of the vessel is everywhere much larger 
than the boundary-layer width. From (2 .1 )  it follows that the total volume flux 
through the boundary layer is 

Flux = K cot (O(q5)) r(q5) dq5, r 
where q5 is the angle of the radius vector shown in figure 2. By mass conservation, the 
interior return flow in a closed basin is 

where A ,  is the cross-sectional area of the basin, A ,  = i$rr2(q5,  z)dq5. For example, 
in a symmetrical surface of revolution, cot (O(q5)) = cot (e), r(q5, z )  = T ( Z )  and the net 
flux in the boundary layer is 

F = 2XKY cot 8 (2.4) 
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Advection by interior 
return flow 

FIGURE 3. Diagram showing the three contributions to the mass balance in a fixed control volume 
in the fluid. These are the vertical diffusive flux (wiggly arrows), the vertical advected flux (vertical 
arrows) and the flux input due to  the flow in the sidewall (sloping arrows). 

Hence the bulk return flow in the interior is 

From (2.3), the local advection-diffusion balance in the interior gives the interior 
mixing equation 

There is an alternative derivation of the interior mixing equation which is quite 
instructive. For this, we require a second result of Phillips (1970), who showed that 
the advected mass flux due to the boundary-layer flow satisfies 

This result may be simply stated that the gradient of the mass flux supplied by the 
boundary layer exactly balances the diffusive flux required by the interior. Therefore 
as a parcel of fluid is carried up the slope, its density decreases so that its density 
difference with the interior remains a function only of the local boundary slope and 
the local ambient density gradient. 

The equation for the conservation of mass across a thin, horizontal control volume, 
ABCD, as shown in figure 3, is 

The first term on the right-hand side is the change in the interior diffusive flux with 
height, the second term is the change in the advective flux with height in the interior 
and the third term is the change in the advected mass flux in the boundary layer per 
unit height, equation (2.7). It follows from (2.3) that the change in the advective flux 
in the interior is equal and opposite to the change in the advective flux in the 
boundary layer (assuming that AJA,,, p,/p,, % 6, in order to  use the Phillips- 
Wunsch-type solution). Therefore the last two terms cancel and the equation 
€or the mass transfer in the interior is 
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This is identical to the local advection-diffusion equation for the interior, (2.6). The 
mechanism of mass transfer involves both a diffusive and an advective ingredient. 
Because of the exact balance between the bulk advective mass transport in the 
interior and the advected mass flux in the boundary layer the net mass transport 
across any horizontal surface is purely by diffusion. The mean return flow in the 
interior is necessary in order that the interior isopycnals remain horizontal. 

The effect of the advection in the interior may be readily understood by 
considering the case in which A,  > 0. In  this case, in steady state, with a given flux 
applied to the bottom surface and removed from the top surface of the vessel, 
Ap, = constant. Thus the isopyncals move further apart as z, and hence the tank 
radius, increases. This stretching of the isopycnals can only be effected by the bulk 
advective flow - KA,/A, which acts downwards. By advecting less of the relatively 
light fluid downwards per unit width, as z increases, the isopyncals are less 
compressed as z increases ; therefore the diffusive mass flux per unit width decreases 
as z increases. 

If part of the bounding wall becomes vertical then there will be no boundary flow 
adjacent to this part of the wall. At such a portion of the boundary, the interior 
return flow decelerates to zero owing to  the no-slip boundary condition and the 
boundary-flow has the form 

v (x )  = v( GO)  [l +exp (-x/S) (sin (x/S) -cos ( x / S ) ) ] ,  (2.10) 

and 2 V P o  p ( x )  = - P v (  a) exp (-x/S) [cos ( x /S )  +sin (x/S)], 
9 

(2.11) 

where 6 = ( 1 / 4 2 )  (P /K~) -+  and  GO) is the interior flow. We have mentioned this 
effect for completeness; it has a negligible effect on the mixing. 

We now investigate the steady-state, interior density profiles in a number of 
simple vessel geometries. We express the solutions in terms of p(0 )  and p,(O) where 
x = 0 represents the base of the vessel. If A,, =+ 0 or p,, $: 0, then the volume flux 
transported in the turbulent boundary layer may change with depth ; however, as 
long as the lengthscales, 8, - A,/A,, and L - p,/p,,, over which A ,  and p, change are 
large compared to the boundary-layer width, S, this does not affect the local 
boundary-layer analysis and the slow interior variations are accommodated in the 
theory implicitly. 

(i) When the vessel has the form of a long channel, whose sidewalls are in the shape 
of a wedge with linear slope, L = Lo + az, the interior advection-diffusion equation is 
simply 

and the steady solution is 

(2.13) 

This result may be used in an interesting problem which elucidates the importance 
of the Phillips-Wunsch boundary flow in determining the interior density 
distribution. Consider a plate suspended, with an inclination to the vertical, in a tank 
with vertical sidewalls, such that the plate does not touch the upper or lower surface 
of the fluid. In this case, a Phillips-Wunsch flow develops on both sides of the plate 
(figure 4a). Since the plate neither reaches the upper nor lower boundary of the 
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A 

FIGURE 4. ( a )  Schematic of the boundary flow and the ivopyncals when an inclined plate lies 
entirely within the upper and lower surfaces of a vessel containing stratified fluid. ( b )  Corresponding 
sketch when the sloping plate does intersect the upper and lower boundaries. Xow, as a result of 
the counterflowing boundary flows, the isopyncals become logarithmically spaced, with the 
stratification of the overlying fluid increasing towards the base and the stratification of the 
underlying fluid increasing towards the top. Note the figure shows the stratification only 
schematically. 

container, this boundary flow does not force a return flow in the interior fluid ; instead 
the upflow on one side of the plate flows into the downflow on the other side of the 
plate. This generates a net circulation around the plate, but no flow in the interior 
fluid. The isopycnals in the interior are equispaccd, as they would be in the purely 
diffusive solution (figure 4a). This solution is possiblc since the mass flux provided by 
the boundary-layer flow to the interior fluid, per unit height, (2.7), equals that 
change in the total interior diffusive flux due to the changing cross-sectional area of 
the interior. 

This situation may then be contrasted with the analogous problem in which the 
inclined plate actually meets the upper and lower boundaries of the fluid. Now, the 
boundary-layer flows on either side of the plate are not connected; instead they drive 
a mean return flow in the interior (figure 4 b ) ,  and the logarithmic density profile 
(2.13), increasing in a different direction on each side of the plate is established. The 
qualitative form of the solution is sketched in figure 4 ( b ) .  

An interesting application of this result, suggested by 0. M. Phillips (private 
communication, 1990), is to a loosely packed gravel bed (in this context, loosely 
packed means that the interparticle spacing exceeds the boundary-layer width 6 and 
all the fluid is in communication at all heights). If the net liquid fraction in the gravel 
bed changes with height, then the overall density profile, will, in general, be 
nonlinear. If the liquid fraction a t  depth z is $ ( z )  then the density profile is 
determined by 

(2.14) 
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in a vessel of cross-sectional area A ( z ) .  This is identical to (2.6) with the area of fluid 
a t  each height now determined by both the liquid fraction and the cross-sectional 
area of the vessel. 

Other very simple geometries have steady-state density profiles which are far from 
linear. 

(ii) If the channel has the shape of a semicircle L = (a2-z2)i  then the steady-state 
density profile becomes 

(2.15) 

(iii) If the vessel is a symmetric surface of revolution with radius T = a(z/zJn then 

p(z) = p(0 )  + ap,(O) sin-' (zla). 

the density distribution has the form 

(2.16) 

3. Timescale of mixing by the Phillips-Wunsch flow 
There has been much discussion in the literature as to the effectiveness of such 

boundary flows in mixing the interior fluid (Wunsch 1970; Garrett 1990). I n  the 
simple situation we discussed in $2,  in which the diffusion coefficients are constant, 
the interior advection4iffusion equation (2.6) shows that the timescale for the 
mixing is given by the interior molecular diffusivity K together with the typical 
radius and depth of the basin, R and H say. Therefore a stratified fluid will mix in 
a time T of the order of 

~ - m i n  - , - .  (Y t2) 
Even though the density profiles become very nonlinear, the Phillips- Wunsch 
boundary flow cannot enhance the rate of mixing of the interior fluid beyond the 
diffusive timescale. Note however, that  in a vessel with sloping sidewalls, in which 
H % R, the Phillips-Wunsch flow reduces the mixing timescale from H 2 / ~ ,  which is 
appropriate for a vertically walled tube, to HR/K;  a reduction proportional to the 
aspect ratio of the tube (Phillips 1970); this result has some similarity with the 
Boycott effect in which particles may be rapidly sedimented out of suspension in a 
liquid in a tube by tilting the tube (Nir & Acrivos 1990) since both processes are the 
result of zero mass flux through the wall. 

The bulk interior motion does not change the rate of mixing compared to the 
purely diffusive timescale even if there is significant bottom topography. This is 
because the process remains essentially diffusive. For example, consider the situation 
in which the floor of the vessel (e.g. the ocean basin) has a series of obstructions (e.g. 
sea-mountains). If the vessel has cross-sectional area A and there are n vertical, 
conical obstructions of semi-angle a and bottom radius 6 placed on the floor then the 
interior mixing equation is 

- ( ( A  -nn[b - z  tan aI2) pz).  
K 

- nn[6 - z tan aI2 

Therefore, although the steady density profile is nonlinear, the effective diffusion 
coefficient for the mixing scales as K as in the case with a flat bottom. 

The situation becomes more complex if there is a turbulent boundary layer near 
the sloping walls. As briefly described in the introduction, when there is a turbulent 
boundary layer in which the eddy diffusion coefficients decay with distance from the 
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wall, the Phillips-Wunsch flow develops a counterflowing circulation (Phillips et al. 
1986). This produces a dispersive mass flux in addition to the turbulent diffusive 
mass flux. If the interior density gradient is non-uniform the rate of accu- 
mulation/diminution of the diffusing component near the wall will be greater than 
that in the interior fluid owing to the greater mass flux near the wall; even at  a 
vertical wall (in which case there is negligible dispersive mass flux) this generates a 
horizontal density gradient which produces a net boundary current (Wunsch 1970 ; 
Ivey & Corcos 1982). We consider this turbulence-induced flow in the remaining 
sections of the paper. 

However, before launching into this discussion, we note that when the interior 
density gradient is constant, even the turbulent Phillips-Wunsch flow does not cause 
the interior to mix more rapidly than the timescale determined by the molecular 
diffusion. Phillips et al. (1986) and Thorpe (1987) showed that when pzz = 0, even 
with a turbulent boundary layer, the net volume flux through the boundary scales 
as 

Jomudx= K,(m)COt(e). (3.3) 

This is purely a function of the far-field diffusivity, K,(CO)  (which equals the 
molecular diffusivity K, in a quiescent fluid) and the slope of the wall. Even though 
there is a turbulent diffusive and dispersive mass flux, the turbulent recirculating 
flow in the boundary produces no net volume flux. 

In  this case, witli pzz = 0, the equation for the mixing in the interior reduces to 

The only solution of this equation which maintains a constant density gradient arises 
when A = Aoexp ( z + a x 2 )  and is p(z, t )  = p(0 ,O)  exp [2~,at](l+2az).  In  this rather 
contrived example, we see that the boundary flow does not increase the rate of 
interior mixing beyond that determined by the interior diffusivity, since the 
advective flow scales as the interior diffusivity, and not the larger, boundary eddy 
diffusivity. For any other shape of the containing vessel, the density gradient rapidly 
becomes non-uniform, and the mixing process becomes dominated by the turbulence- 
generated boundary flows. 

4. Turbulent mixing at a vertical wall 
Consider the situation in which there is a vertical wall bounding a nonlinearly 

stratified fluid, with a turbulent boundary layer adjacent to the wall. In  this case no 
Phillips-Wunsch flow may develop. We assume that the mean flows are weak so that 
we may linearize the momentum equation and we parameterize the turbulent 
fluctuations with an eddy diffusivity and viscosity (Phillips et al. 1986). Using the 
coordinate system defined in figure 1 with 0 = $n so that z = y, the mass conservation 
equation is 

(4.1) 

while the linearized vorticity equation is 

g - = p(0)  --- v .  ( V , V W )  (Z) (:x 
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For clarity, we write p(x, y) = po(y)+pl(x, y). As in $2, we consider the situation in 
which the boundary-layer width, 6, is much less than the vertical scale, L,  over which 
the ambient density gradient changes, L - por /pozz ,  and we deduce that d/ay < a/ax 
and u 6 v. The term (u -V)p ,  in (4.1) is small if p ~ y y ( ~ e ~ e p o ) ~  < peg; (in $5 we derive 
a scaling for 6 which shows that this is equivalent to 6 < L).  In  this case, to leading 
order, (4.1) and (4.2) become 

and 

(4.3) 

(4.4) 

where v = $z and u = -1,9~. Prom (4.3) and (4.4) we can determine the boundary- 
layer velocity, the density field and the boundary-layer thickness ; the boundary- 
layer properties scale as 

where p(0 )  is a typical value of the density. At x = 0, i3pplax = 0 and v = u = 0, while 
for x > 6, pl ,  u, v - 0. If we integrate (4.3) from x = 0 to a point beyond x = 6, where 
6 is the boundary-layer width defined such that K,(x) N 0 for x > 6, we obtain 

$(a) is the leading-order asymptotic approximation for $(a), the volume flux per 
unit cross-slope length of the boundary layer, assuming that SFe % RK,, where R is 
the width of the vessel and K, the interior, molecular diffusivity and 6Ke = Jdm,(x). 
Integrating to a point just  beyond x = 6 ensures that the integral is convergent (cf 
Garrett 1990). 

We .deduce that the total volume transport in the turbulent boundary layer, 
integrated around the sidewalls of a closed basin, is 

where s 6 ds is the area of the boundary layer integrated around the surface of the 
vessel a t  height z. We have assumed that a($) < r ( $ )  so that our local two- 
dimensional analysis holds. MeDougall (1989) obtained a simplified form of (4.7) for 
the boundary-layer volume flux using a bulk model to describe the boundary layer, 
in a similar fashion to the first part of the Appendix. 

This turbulence-induced boundary flow forces a mean return flow in the fluid 
interior given, as in $2, by the expression 

where ds is an element of the surface a t  depth y and SdA is the cross-sectional area 
of the basin a t  depth y. W is non-zero only if either the interior density gradient is 

21 FLM 226 
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Isopycnals shown at 
equal density intervals 

FIGURE 5 .  Schematic diagram showing illustrating the mixing of the interior fluid by the boundary- 
driven flow. In the diagram shown the initial density profile was a symmetrical pycnocline. 

non-uniform or the intensity of the turbulent mixing, 6Ke,  varies with height. If W 
is non-uniform then the interior fluid may be mixed advectively. The advec- 
tion-diffusion equation for the interior has the form 

(4.9) / d s ( K  Py)y - - Km Pyy. 

Pt- j-dA 

This is quite different from the equation (2.6) derived in 52 for thc laminar 
Phillips-Wunsch flow ; in the present case, thc effect of the advective flux may far 
exceed the effect of the interior (molecular) diffusion if 

In  a cylinder of radius R ( 9  6) with vertical walls, (4.9) reduces to 

The 
The 

boundary flow may either entrain or detrain into 
detrainment velocity is 

(4.10) 

(4.11) 

the interior of the fluid body. 

(4.12) 

Note that (4.9) accounts for this detrainment implicitly. The buoyancy jump across 
the boundary layer is given from (4.4) by 

since p,(6) - 0. 

(4.13) 
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One very interesting feature of the mixing, described by (4.9), is that  in the limit 
(4.10) the process is not diffusive. The mixing of the interior fluid is effected by 
vertical variations in the mean return flow in the interior ; such variations arise as a 
result of entrainment or detrainment from the boundary-layer flow if the cross- 
sectional area of the basin is constant. If the return flow in the interior changes with 
dcpth, the isopyncals are advectcd vertically a t  different rates such that they are 
spread further apart or compressed and so the interior density gradient changes, as 
originally discussed by Wunsch (1970). This process is shown schematically for a 
pycnocline in figure 5 ;  it is consistent with the observations and discussion of Ivey 
& Corcos (1982) and Ivey & Nokes (1989). Following lvey & Corcos (1982), in our 
model we assume that the lateral intrusions, which result from the variations of the 
mean vertical volume flux with height in the boundary layer, spread uniformly 
across the vessel and we can thereby predict the interior flow field. 

In  the Appendix we present a simple, horizontally averaged bulk model describing 
the turbulcnce-generated boundary flow, similar in approach to McDougall (1989). 
This is instructive because it predicts the same results as the more detailed model of 
this section but only uses the global conservation of mass. 

5. Comparison of the interior mixing model with experiment 
In  this section we compare the theoretical model introduced in 94 with some 

laboratory experiments reported by Ivey & Corcos (1982) and Thorpe (1982). In 
these experiments a grid was oscillated a t  a vertical sidewall of a tank containing a 
stratified fluid. The initial stratification consisted of either a linear density gradient 
or a pycnocline. Thorpe (1982) parameterized the eddy diffusivity and boundary 
layer width using the experimental results of Hopfinger & Toly (1976), who 
investigated grid turbulence in a homogeneous fluid. He argued that the boundary- 
layer width is determined by the point a t  which the timescalc of an eddy exceeds that 
due to the stratification; a t  this point the turbulent eddies collapse under the 
stratification. Assuming that the motion within the boundary layer is independent 
of the stratification, Hopfinger & Toly’s velocity and integral lengthscales may be 
used to give the scale for the boundary-layer thickness 

where a is the amplitude of oscillation, o the frequency of oscillation and d the grid 
spacing. This is consistent with the model equation (4.5). It also follows from the 
work of Hopfinger & Toly that the eddy diffusivity in the boundary layer scales as 
the product of the integral lengthscale and the boundary-layer velocity ; 

K, - wa5dl. (5 .2)  
3 1  - 

Combining these two results it readily follows that 

Id&$ pi aiddfot I d 8  

(5.3) 

Ivey & Corcos (1982) derived analogous scalings for the boundary layer and later 
Ivey (1987 a )  applied the results of Itsweire, Helland & Van Atta (1986) to  derive the 

21-2 



638 A .  W.  Woods 

same result. Using (4.9) and (5.3) we deduce that the advection4ffusion equation 
modelling the mixing of the interior fluid in the experiments of Ivey & Corcos (1982) 
is 

(5.4) 

in the limit p & , y ( ~ , ~ , p O ) i  < gi& (i.e. L 9 a), where y = yoa 3ad(3(1-a)) wf (po/g)f, yo is 
constant and a = t. 

As in $2,  there is an alternative derivation of the interior advection-diffusion 
equation (5.4). Given the total vertical mass flux, F ,  into and out of a control volume 
in the form of a horizontal slice which spans the whole cross-section of the vessel, we 
may derive the interior advection-diffusion equation by considering 

?JdAP = ay aF 
at (5.5) 

The value F may be determined either from experiment or from theory. In this way, 
the global mixing equation for the ambient density, po, may be derived solely from 
the experimentally measured mass flux. 

The vertical mass flux, F ,  predicted by our model satisfies 

where the first two terms represent the diffusive mass transfer in the boundary layer 
and interior respectively and the last term is the net advective mass flux due to the 
density anomaly between the boundary layer and the interior fluid. In the 
experiments reported by Ivey & Corcos (1982) and Thorpe (1982), the ratio of area 
of the interior of the basin to the area of the boundary layer satisfied 

(5.7) 

Thus it follows that the molecular diffusion in the interior is negligible. Furthermore, 
from the scalings given in (4.5), it follows that plv < (i3po/ay)Ke, so that the 
dispersive contribution to the mass flux is negligible. Therefore (5.6) may be 
simplified to  

(5.8) 

This equation implies that asymptotically the net vertical mass flux is transported 
principally by turbulent diffusion through the boundary layer (i.e. the first term on 
the right-hand side of (5.6) is dominant). The dependence of the net mass flux upon 
py as predicted by (5.8) is the samc as that measured experimentally by Ivey & 
Corcos (1982), Thorpe (1982) and Ivey (1987 a).? This supports the physical model of 

t We note tha t  there is some disagreement about the constant a in the expression for y ,  (5.1); 
however, Thorpe (1982) pointed out that  a = f is consistent. within experimental error, with all the 
experimental results. 

F - (dn&& N -, y (  - p y ) ~  ds. 'S 

94. 
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From (5.5) and (5.8) the interior mixing is given by 

P Y U  

639 

(5.9) 

This is identical to the mixing equation (5.4) which was derived from the boundary- 
layer dynamics by consideration of the net volume flux in the boundary layer and 
hence the interior ; this agreement is strong evidence to support the model of the 
boundary layer and interior return flow. As explained in $4, the flow field in the 
interior spreads the isopycnals so that the interior density profile evolves at the rate 
determined by the mass flux in the boundary. 

Equation (5.9) has a similarity solution, using the combination 7 = yt-3, in which 
p satisfies the ordinary differential equation 

(5.10) 

where h = y j ds/ dA. In this similarity solution, a pycnocline is predicted to'spread 
approximately as y - t; in a tank with vertical sidewalls. This is different from purely 
diffusive mixing, in which a pynocline spreads as z - ti. Note that this theory strictly 
only applies when 6 4 L; using the boundary-layer scalings for a pynocline this 
occurs after a time t - (K,A/K,) ( ~ P ~ / P v ~ K ~ ) - & ,  which is very soon after the start of 
the experiment. 

Equation (5.10) may be solved analytically for a region 7~ (0, 00) in which p(0 )  = 
1 and p(a0)  = 0, for example by using the substitution 7 = 14~hitan ($)/( -po,)Q; in 
figure 6 ( a ) ,  we have plotted p as a function of 7 .  The similarity solution breaks down 
with no-flux boundary conditions imposed a t  z = 0 and z = H .  I n  figure 6 ( b ) ,  we plot 
the numerical solution of the advection-diffusion equation (5.9) with an initial 
condition of a pynocline. This shows how the solution diverges from the similarity 
form, as a result of the boundary influence and may also be compared with figure 6 
of Ivey & Corcos (1982). 

Ivey & Corcos (1982) first described the interior flow (their figure 12) and noted 
that since the lateral flow extends across the vessel interior, the lateral flow a t  
position x away from the boundary has the value u = U(L-x)/L, where U is the 
detrainment velocity from the boundary layer and L is the width of the vessel, in 
two-dimensions, or radius, in three dimensions. Using our boundary-layer analysis, 
we can explicitly compute the interior flow as a function of the boundary-layer 
motion. 

When a linear density profile is present in the tank, the no-flux boundary condition 
at  the upper and lower boundaries produces the nonlinearity in the density profile. 
This drives a boundary-layer flow which rapidly spreads to the centre of the tank ; 
the boundary layer near the top of the vessel is enriched with heavy fluid by 
turbulent mixing and sinks, while the boundary layer near the base of the tank is 
enriched in lighter fluid and rises. By conservation of mass, lateral intrusions develop 
as the two boundary flows converge near the middle of the vessel. However, at the 
upper and lower corners of the tank, an extra complication arises owing to the 
different rate of mixing at the corners compared with at a planar boundary. 

With a pycnocline, the turbulence beside the wall causes the boundary layer above 
the interface to become enriched in heavy fluid and i t  sinks, while the fluid below the 
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FIGUHE 6 (a, b ) .  For caption see facing page. 

interface becomes enriched in light fluid and rises. These converging flows also drive 
lateral intrusions, I n  figure 6 (c, d )  (which is similar to figure 12 of Ivey & Corcos) we 
have plotted the stream function for the interior flow field for the mixing of a 
pynocline in both a two-dimensional geometry, as relevant for the Ivey & Corcos 
(1982) and Thorpe (1982) experiments, and also in a cylindrical vessel. In these plots 
we have used the similarity density profile of figure 6 ( a )  with h = 1. 

We have calculated the rate of spread of the pynocline from the data reported by 
Ivey & Corcos (their figure 6) and this is shown in the present figure 7. Given the 
turbulent nature of the mixing, the data agree reasonably well with the solid line 
z - d predicted by the above similarity theory, up to the time log ( t )  N 3. However, 
beyond this point, the mixing is more rapid, possibly because the pycnocline has 
spread to the upper and lower horizontal boundaries and so the end effects enhance 
the rate of mixing, In  addition, near the upper and lower corners the eddy 
diffusivities differ from those beside a planar wall (Ivey & Corcos 1982). This effect 
may also cause the experiment to evolve more rapidly than predicted by the 
similarity solution. The mass flux measurements are a more reliable test of the theory 
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because the mass flux is a vertically averaged measurement and errors are smoothed 
out in contrast to a local measurement of the rate of spread of an individual 
pynocline. We have shown in this section that the theory which predicts the interior 
volume flux and the interior mixing equation is consistent with the mass flux 
measurements of both Ivey & Corcos (1982) and Thorpe (1982). 

We note here that in figure 6 of Ivey & Corcos (1982), there is a large asymmetry 
in the reported density profiles above and below the centreline in the tank, where the 
pynocline was originally located. The mid-depth density has the value 1.005, while 
the fluid on the floor has density 1.010 and the fluid a t  the top has density 0.9975. 
The reason for this asymmetry is not clear, but mixing asymmetries between the 
bottom corner with the rigid floor and the top corner with the free upper surface may 
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mixing a t  points near the pynocline. Beyond this time the anomalous mixing in the corners appears 
to increase the mixing rate above the theoretical prediction. 

explain some of the difference in the rate of mixing in this particular experiment 
compared with similarity theory. 

6. Boundary flow on a slope with a turbulent boundary layer 
In this section we analyse the more complex problem of mixing at a sloping 

boundary above which there is a turbulent boundary layer. This problem may 
exhibit both the turbulent Phillips-Wunsch flow, including the counterflowing 
circulation, and the turbulence-driven flow discussed in $94 and 5 .  

The boundary-layer circulation may be understood as a consequence of the 
decrease of the eddy diffusivity away from the wall; if the wall is sloping, the eddy 
diffusivity has both horizontal and vertical gradients which, when combined, can 
produce horizontal density gradients even if the ambient fluid has a uniform vertical 
density gradient. 

In  a non-uniform density gradient. both the dispersive and the turbulent diffusive 
mass flux may change with depth. This results in the accumulation or diminution of 
mass in the boundary layer which produces horizontal density gradients ; such 
horizontal density gradients drive a net volume flux along the boundary, as described 
in $3. Phillips et al. (1986) presented a simple dimensional analysis of this flow regime 
in which they suggested that the mass transport along the boundary is dominated by 
the dispersion due to  the counterflowing circulation. Garrett (1990) investigated this 
in more detail, calculating the recirculating flow and the association dispersive mass 
flux, in the case of a uniform ambient density gradient. He showed that the vertical 
mass flux in the boundary layer equals the sum of the alongslope diffusive and 
alongslope dispersive mass fluxes. He introduced a mixing eficiency ratio ( I )  defined 
as the ratio of the actual vertical mass flux in the boundary layer to the mass flux 
which would be driven by turbulent diffusion alone if the isopycnals remained 
horizontal. He found I < 1,  so that the effect of the circulation is to reduce the total 
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mass flux ; this is because the alongslope dispersive mass flux is less than the cross- 
slope turbulent diffusive flux would be with horizontal isopycnals. 

In this section, we extend these results, pursuing the approach of $2 by calculating 
the net volume flux along the boundary. We then derive and investigate the interior 
mixing equation. If the turbulent dispersive and diffusive mass fluxes are not 
constant, then a net volume flux is produced along the boundary; however, the 
counterflowing circulation itself has zero net volume flux (except for the molecular 
Phillips-Wunsch flow contribution (2.1)). 

As in 55, we consider the limit in which the boundary-layer width is narrow 
compared to the scale over which the ambient density gradient changes, 6 4 p,/p,, 
= L. Using the coordinates of figure 1 and writing p(x, y) = po(x) +pl(x, y) where z = 
x sin 0 + y cos 8, the boundary-layer equations are 

and 

Integrating the mass conservation equation (6.1) across the boundary layer, we 
deduce that 

$(a) sin 8pot( 1 + O(6)) - sin e(< sin 86poz)z + K, cos epoz 

-Idx(u-V)p,+ dx-(Ke1 , (6.3) I :Y 3 
where v = $s and u = -$y and cEe = S ~ , d x .  On the right-hand side, the first term 
represents the flow due to the divergent turbulent mass flux, as described in $5.  The 
second term represents the net transport by the Phillips-Wunsch flow itself. The 
third term is the volume flux due to  the divergence in the dispersive flux along the 
boundary arising from the counterflowing circulation. It reduces to (slay) $0" $xpl dx 
since there is no slip on the wall and pl+0  as x-f co (i.e. x > 6). The fourth term 
represents the volume flux induced by the divergence of the perturbation density 
gradient along the boundary ; this is negligible, if pot varies slowly with depth so that 
the alongslope perturbation density gradient is small compared to the background 
density gradient (Garrett 1990). 

I n  (6.1) the alongslope advection balances the cross-slope diffusion a t  leading order 
within the boundary layer giving 

This implies that  within the boundary layer 

and so the dispersion term in (6.3) satisfies 

The boundary condition pox = -plz a t  x = 0 suggests the scaling pls = -h(x)p,, in 
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the boundary layer where h = O( 1). Garrett (1990) noted that h < 1 over most of the 
boundary layer and his figure 6 shows that the effectiveness of the mixing Z < 1. In  
fact, since Garrett considered the case of very small 8, the alongslope diffusive flux 
is negligible compared to the alongslope dispersive flux, and so his ratio Z reduces to 
the ratio of the alongslope dispersive flux to the vertical diffusive flux. Therefore, 

Kd = / h ( l - h ) K e d X  < K,dX = K,, 
since Z < 1, 

where K~ represents the effective diffusion coefficient in the boundary produced by 
the turbulent dispersion (in the sense of Taylor 1954). The term representing the 
volume flux induced by the turbulent dispersion, (6.6), may now be written 

s 

and so from (3.3) the total return flow in the interior therefore scales as 

poz d ( ~ ,  sin2 8 + Kd cos2 0) 
sin 8 

The first term represents the molecular Phillips-Wunsch flow and is negligible. 

boundarv-driven flow is 
The advectiondffusion equation for the interior mixing resulting from the 

A sin 8 ‘2 sin eA 

where k = Fe sin2 8 + tcd cos2 8 is a function of the local angle of the slope, 8 ( z ) ,  assumed 
to vary on a scale much longer than the boundary-layer width 6. The second term on 
the left-hand side of (6.9) represents the hypsometric effect caused by the changing 
cross-sectional area of the basin. Note that $ds&/sinB is the area of the boundary 
layer, A,,, in any horizontal plane. Interior fluid is only mixed a t  a rate faster than 
the interior diffusivity if the interior density gradient is non-uniform and there is a 
strong turbulence-driven boundary flow. 

I n  order to investigate the mixing of the interior further we need to specify the 
boundary-layer width and eddy diffusivity . As in 5 5, the boundary-layer width scales 
according to the maximum size of an eddy whose timescale is less than that of the 
internal gravity waves (Hopfinger & Toly 1976 ; Thorpe 1982). For grid-generated 
turbulent boundary layers, the eddy diffusivity scales as the grid oscillation 
frequency, w ,  oscillation amplitude, a, and the grid spacin4, d ,  giving K, - waidi and 
the boundary-layer width scales as 6 - do/( -p,); = a f d b / (  -p,)i. This expression 
does not include the dependence of 6 upon 8. The leading-order balance from (6.1) 
and (6.2) gives 

If we write p1 = -h(z)p,, where h = O(1) (Garrett 1990), then we require S4h - 
(1 - A )  K, (v,po/g)/sin2 8poz. If we adopt the boundary-layer scale 6 - 6,/Nisini8, 
following Phillips et al. (1986) and Garrett (1990), with P = - (g/po)pz, then we 
require 1 -A(x) and h(x) to be O( 1). If the boundary-layer width scales according to 
the Hopfinger & Toly scale, 6 - So/&, then we require h - 1 -asin28, where a is a 
constant, and K~ - a ~ , s i n ~ O .  The difference between these two scales for 6 only 
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becomes significant for very small wall slopes, 0, when sin; 0 is small. In the range of 
angles studied by Salmun & Phillips, 7 < 0 < 26, s i d e  varies from 0.35 to 0.63. This 
difference is not significantly greater than the error margins in measuring 6, reported 
by Phillips et al. (1986), and so the exact angular dependence may require further 
measurement. In the following discussion, we set S = 6, sin (0)Ni where Sl(0) is 
independent of N .  

The interior mixing equation (6.9) may now be rewritten as ,. 
(6.10) 

J" 
For a surface of revolution of radius R = zn, with cot 0 = R,, the equation for the 
mixing reduces to 

t -  - -26 1 ; ( - P A !  Xn ' (6.11) 

where i = k(R,) while for the two-dimensional mixing in a channel the equation is 

(6.12) 

For n = 0 and 1,  the slope and hence i are constant and (6.11) and (6.12) have the 
similarity variable 5 = ~ t - ~ / ( ' + * ~ ) ,  where z is the vertical coordinate. The ease of a 
vertical wall, n = 0, was considered in $5.  In  figure 8 ( a ) ,  we have plotted the self- 
similar density profile for a point souree spreading from the apex of a two- 
dimensional channel (n  = l) ,  as given by (6.12). In contrast, in figure 8 ( b )  we present 
the evolution with time of a pycnocline mixing in a two-dimensional channel, subject 
to zero-maw flux boundary conditions a t  the upper and lower surfaces, as governed 
by (6.12). In this solution, the effect of the vertical asymmetry in the basin shape 
combined with the upper and lower boundary conditions influence the evolution of 
the density profile Significantly. The effect of the geometry may be seen most clearly 
by comparison with figure 6 ( b ) .  However these solutions (figure 8 b )  are not 
applicable to a pycnocline in the initial stage of mixing when 6 - L = p,/p,, ; this is 
a very short time unless the wall is nearly horizontal in which case our theory breaks 
down and the mixing described by Turner (1979) for a horizontal, oscillating grid 
applies. We now compare the model with the experimental results of Phillips et al. 
(1986) and Salmun & Phillips (1991). 

Phillips et al. (1986) and Salmun & Phillips (1991) investigated experimentally and 
theoretically the mixing of a pynocline on a linearly sloping wall. We first focus upon 
the earlier work. Phillips et al. measured the mass flux through a horizontal surface 
by calculating the rate a t  which the mass (of salt) above the surface changed with 
time. They predicted, in a similar manner to the above theory, and also measured 
experimentally the scaling for the mass flux at the pyenoeline 

(6.13) 

the dependence upon the slope angle is derived from their assumption that the 
dispersive mass flux is dominant and also that S - d,/sin2 0( -p,);. We have included 
the diffusive flux in our theory, replacing the term i cos2 0 with the term K~ cos2 0 + 
Ke sin2 0, in view of the results of Garrett (1990), from which we deduced earlier that  
the alongslope diffusive mass flux is also important. The scaling (6.3) for F in terms 



646 A .  W .  Woods 

4.0 I 

3.5 

7 3.0 
-F 
w 

P - 2.5 
ii 2 2.0 
z 

1.5 

2 
.- M 1.0 

0.5 

h 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Density 

1 .o 
N 0.9 

!? 

- 
2 0.8 

0.7 

0.6 

0.5 

0.4 

5 0.3 

a 
!? 

... 
g 0.2 

0.1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.8 0.9 1.0 
Density 

FIGURE 8. (a) The similarity solution of (6.12) for the dimensionless density in the interior of the 
fluid produced by the mixing from the turbulence-driven flow along a linearly sloping boundary, 
n = 1. Solutions are given for 6,; = 1.0,O.l and 0.01. (b )  The evolution, with time, of a pycnocline 
spreading in a two-dimensional channel with linearly sloping walls, n = 1, as predicted by (6.12), 
incorporating the effects of the zero-flux conditions a t  the upper and lower surfaces. Dimensionless 
density profiles are shown at non-dimensional times 0,0.005,0.015,0.030,0.050,0.075,0.105,0.140 
and 6, i = 1.  The initial condition is shown as the first density profile. The sloping walls change the 
solution dramatically from that of a vertical wall (figure 6b). 

of pr is consistent with the results of Ivey & Corcos (1982) and Thorpe (1982), thereby 
supporting the unifying approach we have presented in this section. Our mixing 
equation (6.10) suggests that  the mass flux F scales as 

F - 8, ‘(-p&?)’ (6.14) 

Phillips et al. also suggested that the volume flux in the boundary layer had the value 
(their equation (4.19)) 

A cos2 B(wad)b ( - p r  
(6.15) 

Fv = - h2sin18 gp,, ’ 

The similarity solutions of figure 8 (a) for the mixing of a point source from an apex 
are not directly applicable to  this experiment ; only when the mixing front has spread 

L,+az . 



Boundary-driven mixing 647 

1 .o 
N 0.9 

p 0.8 

2 0.7 

0.6 

0.5 

4 0.4 

3 0.3 

- 
0 

0 

> 

M g 0.2 

0.1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Density 

0.15 

K 

a2 

- 9 
> -0.05 - 

-0.10 - 

-0.15 
0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

Height above floor of vessel, z 

FIGURE, 9. (a)  The evolution with time of a pycnocline spreading in a two-dimensional channel of 
width L = g+z ,  similar to the Phillips et aE. (1986) experiments. The non-dimensional density field 
is shown at the non-dimensional times 0, 0.005, 0.015, 0.030, 0.050, 0.075,0.105,0.140 and 6, i = 
1.0. Kote that the finite width of the channel floor causes the pynocline to spread a t  a rate 
intermediate to that of figures 6 ( b )  and 8 ( 6 ) .  (6) Comparison of the theoretical volume flux (6.17) 
predicted by the present theory compared with that given by the scaling of Phillips et al. (6.18) a t  
non-dimensional time 0.015. for K = 1 .  

sufficiently far from the apex that ax % Lo will the mixing asymptote to the similarity 
solution for n = 1 (assuming the mixing process described herein still obtains a t  that 
stage). Before this point is reached the interior mixing equation retains some detail 
about the geometry of the basin and is 

(6.16) 

When Lo 2 ax, the mixing will not be self-similar, but will lie between the self-similar 
vertical-wall mixing rate z - tg (figure 6) and the self-similar linearly sloping-wall 
mixing rate z - tA (figure 8). We have solved (6.16) numerically, starting with a 
pynocline, using the non-dimensional vessel shape L = ( z + % )  where 0 -= z < 1, 
similar to  the experiments of Phillips et al. In figure 9 ( a ) ,  we have plotted a time 
sequence of density profiles which is similar to the experimental results of Phillips 
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et al, Note that a t  cach time the density profiles lie betwcen those of figures 6 (b )  and 
8 (b) .  

According to our boundary-layer theory the volume flux along thc boundary, 
which is given by (6.8), scales as 

- 4 @ozz 

4- (Lo + az) ( -Po,):. 
(6.17) 

In contrast, Phillips et al. argued that the volume flux in the boundary scaled as 

(6.18) 

(cf. (6.15) with h N ( k t ) ; ) ,  based upon the assumption that the density profile remains 
Gaussian so that po,,/po, - z / ( k t ) f .  In their figure 12. they showed that their 
experimental data agreed well with (6.18). In  figure 9 ( b )  we present V,, as given by 
(6.17) at the non-dimensional time t = 0.015 for K = 1. For comparison, we have also 
plotted expression (6.18), evaluated a t  t = 0.015, scaled such that V' matches a t  z = 
0.7, on figure Y ( b ) .  There is little difference in the volume flux scaling suggested by 
Phillips et al. (6.18) and that predicted by our boundary-layer theory of the mixing 
(6.17), particularly near the pynocline, 0.3 < z < 0.7. This range includes those 
values of z over which Phillips et al. compared (6.18) with their experimental data. 
Thus we suggest that the expression (6.17) also scales consistently with the 
experimental data. 

As first suggested by Ivey & Corcos (1982), the stream function for the interior flow 
field is given by 

$, = - w; $hz = W(L(  2 z I - 4 -  (6.19) 

$(x, Z) = - WX+ L ( z )  W,dz. (6.20) 

Salmun & Phillips (1991) recently found experimentally that the mass and volume 
flux along the boundary increase as the slope angle is increased. This is inconsistent 
with the scaling that Phillips et al. (1986) proposed and which leads to expression 
(6.13) herein. Using the present boundary-layer theory, we have derived a general 
expression, (6.14), which includes the mass flux due to both the turbulent diffusion 
and dispersion. The expression is 

i This has solution 

(6.21) 

for the mass flux. 
As mentioned above, further experimental investigation may be required to 

establish the precise dependence of 8, upon 0. If we adopt the scaling of Phillips 
et al. (1986) for the boundary-layer width, then 8, - 6,sin-tO. In  this case, if 

ice x l V K ,  (6.22) 

then expression (6.21) increases with 0 for 0 > 7 and so is in accord with the 
experiments of Salmun & Phillips (1991) ; we note, however, other scalings for 6, may 
also be consistent. The condition (6.22) states that for sufficiently large slope (in this 
case 7"), the diffusive mass flux exceeds the dispersive mass flux, and therefore the 
transport can increase with slope angle ; Phillips et al. did not include the diffusive 
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transport. Our analysis is consistent with $$4 and 5 in which we showed that when 
the boundary is vertical, the mass flux is purely diffusive. The condition (6.22) is 
consistent with, although in the smaller range of, the values of I - K,/Ee of Garrett 
(1990) given in his figure 6. Garrett plotted I as a function of the ratio qh which 
represents the boundary-layer width divided by the decay scale of the turbulence 
(which is externally imposed) ; however his boundary-layer width includes a 
contribution from the rotation and this increases the value of qh, particularly a t  
small 0.  Therefore, in the present non-rotating problem, it may be appropriate to  
take a value of qh less than unity, in which case it follows from Garrett's figure 6 that  
I < 0.4. 

In  this section we have combined the boundary-layer flow which is produced by 
the divergence of both the turbulent diffusive mass flux and the turbulent dispersive 
mass flux in the sloping boundary layer. We have calculated the interior 
advection-diffusion equation and identified how the basin shape affects the mixing 
produced by the turbulence-driven boundary flow. We have shown that the theory 
is consistent with experiments of mixing on a slope. Similarity solutions exist for 
mixing a t  a vertical or linearly sloping wall (n = 0 or 1) with similarity variable 6 - 
~ t - ~ / ( ' + ~ ~ ) .  The rate of mixing caused by such boundary mixing may be compared to  
the corresponding result with the purely laminar Phillips-Wunsch-driven mixing 
($2) ,  in which case the similarity variable has the form g - ~ t - l / ( * + ~ ) .  

7. Application to deep ocean basin mixing 
Following Munk (1966), there have been a number of studies aimed a t  quantifying 

the mean mixing in the ocean driven by boundary processes. Eriksen (1985), Garrett 
& Gilbert (1988) and Ivey & Nokes (1989) have addressed the mixing produced by 
internal waves interacting with sloping walls in order to evaluate the energy which 
may be available at the wall for mixing. Garrett (1984) and Gregg (1987) analysed 
the effect of a depth-dependent eddy diffusivity in the interior of the ocean and Ivey 
(1987 b) extrapolated his experimental results to the oceanic context following the 
work of Armi (1978). However, there is still some uncertainty as to the dependence 
of the eddy diffusion coefficients on the density gradient in the (boundary regions of 
the) ocean. Therefore, in this section, we assume, purely for simplicity, that  k, S is a 
constant. We present a very simple advection-diffusion equation for the mixing of 
the interior fluid, based upon the present analysis of the boundary-flow-driven 
mixing. We include an imposed steady source of fluid which produces a mean vertical 
flow in addition to the boundary-driven, interior return flow. This may be regarded 
as a very simple model of cold water intruding into the bottom of a deep ocean basin 
and subsequently being mixed. Owing to the simplicity of the model, we investigate 
the qualitative effect which the boundary mixing may produce, rather than 
attempting to simulate a particular oceanic measurement ; we have left detailed 
quantitative application of this model to a further study. 

We have ignored the role of rotation, although in some oceanic contexts this may 
be important. The boundary flows we have described may exist in a rotating system, 
with a suitable geostrophic zonal flow. However, the rotation may restrict the 
interior return flow, especially the entrainment and detrainment, to  an annulus near 
the outer boundary, whose width is of the order of the Rossby radius of the system 
(Ivey 1987~) .  This may then produce spatial inhomogeneities in the interior mixing. 
In  the Appendix, we suggest a simple extension of the bulk, non-rotating boundary- 
layer theory to include the zonal geostrophic flow which arises in a rotating system ; 
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however such modelling requires further development. This new zonal flow induced 
by the turbulence-driven boundary flow, has some similarity with the flows of 
Thorpe (1987) and Garrett (1990) who considered the geostrophic flow arising as a 
result of the Phillips-Wunsch-type flow in a rotating system. 

A volume flux Q input to the floor of the basin will drive a vertical mean flow 
Q/xR2 upwards in the interior of the basin of radius R (ignoring any entrainment 
which may occur as the input fluid enters the basin over a sill and sinks to the floor). 
Using the results of $6, the interior mixing is governed by the advection-diffusion 
c yuation 

Taking Sk, to be a constant and R = L, + az, the steady density profile has the form 

With poz < 0, the main effect of the input of the cold water is to  advect the isopycnals 
upwards, weakening the density gradients a t  the base of the vessel and enhancing 
them a t  the top. This is consistent with the qualitative form of the density structure 
in the deep ocean, for example figure 3 of Munk (1966). This density gradient 
produces an upward boundary flow (cf. $05, 6)  and hence a downward return flow in 
the basin interior. The density gradient is such that this downward return flow in the 
fluid interior is equal, but opposite, to the upward flow due to the source of water a t  
the floor of the basin ; therefore the net upward flux of water, due to the basal input 
of water, propagates upwards through the basin via the boundary layer. 

In  a basin which is long and narrow (e.g. a fjord) the upward flow due to a basal 
input of cold water may be approximately two-dimensional, of the form Q / L ,  where 
Q is the volume flux input per unit length of the channel and L the width o f  the 
channel. In this case the advection-diffusion equation becomes 

Again taking k, 6 constant as the simplest model, the steady-state density profile has 
the form 

and the effect of the cold water input is to advect the isopycnals upwards. 
In these simple examples, although the mixing is advective i t  behaves as a 

diffusive process in which the effective interior diffusivity scales as (ke 8j ds/J dA) ; 
this is similar to the results of Armi (1978) and Ivey (1987 6 ) .  

8. Conclusion 
We have reviewed and quantified the two mechanisms by which a boundary 

current may be produced in a stratified fluid; (i)  the Phillips-Wunsch flow driven by 
the condition of no normal flux at  a sloping wall and (ii) the turbulence-driven flow, 
produced when there is divergent mass flux in a turbulent boundary layer adjacent 
to the wall; such a divergent turbulent mass flux is produced when there is either a 
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non-uniform interior density gradient or a variation in the intensity of the turbulent 
boundary mixing with height. We have analysed how these different flows mix the 
fluid interior. The interior mixing equation driven by the laminar Phillips-Wunsch 
flow is 

while that  produced by a turbulent boundary layer, on a sloping wall, is 

where SGds is the cross-sectional area of the turbulent boundary layer, A,  the area 
of the whole basin and 2 = Ke sin2 0 + K~ cos2 0 is the effective vertical eddy diffusivity 
across the boundary layer which includes both the alongslope turbulent diffusion 
( K e  sin2 0 )  and the alongslope dispersion produced by the counterflowing circulation 

The laminar Phillips-Wunsch flow changes the steady-state density profiles in 
vessels of non-uniform cross-section dramatically in contrast to their linear 
counterpart in a vertically sided vessel. For example, in a two-dimensional channel 
with linearly sloping side-walls, the laminar Phillips-Wunsch flow results in a 
logarithmic steady-state density profile (figure 4). 

We have also shown that only through the turbulence-driven boundary flow can 
the interior mix a t  a rate significantly different from the purely diffusive value 
appropriate to the interior. As the slope of the wall increases towards the vertical, the 
turbulent dispersive mass flux in the boundary layer decreases to  zero, and the 
turbulent diffusive mass flux controls all the boundary-driven mixing. Comparison of 
figures 6 ( b )  and 8 ( b )  shows that the manner in which a pynocline adjusts to  a uniform 
density is highly dependent upon the vessel geometry; figure 6 ( b )  shows the 
adjustment in a two-dimensional channel with vertical sidewalls, while in figure 8 ( b )  
the adjustment occurs in a channel with linearly sloping sidewalls, which meet a t  an 
apex. Our model is consistent with published experiments for the mixing a t  both 
vertical and sloping sidewalls. 

We have investigated the qualitative effect of such mixing in deep ocean basins. 

( Kd COS2 0). 
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Appendix. A simple bulk model of the turbulent boundary flow 
The results of $5 suggest a very simple bulk model which describes the turbulence- 

generated boundary flow. Following the experimental results of Ivey & Corcos 
(1982), Phillips et al. (1986), Salmun &, Phillips (1990), Thorpe (1982) and Ivey 
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Insulating 
sidewall 

FIGURE 10. Definition of the coordinates for the bulk model of the turbulence-driven 
boundary flow. 

(1987 a) we deduce that the boundary layer is well mixed and that the time-averaged 
boundary layer has a sharp interface with the interior, quiescent fluid. For the simple 
model of this appendix, we assume that the boundary layer has uniform eddy 
diffusion and viscosity coefficients given by 

_ _  lve,Ke(x)dx 
ve, K, = lim ( S - t O )  

ldx 
and a uniform vertical velocity w(z) ,  density po(z)+pl (z) ,  p1 4 po, and detrainment 
velocity u(z), with boundary-layer width 6(z ) .  The bulk equations for the 
conservation of volume flux, mass flux and momentum flux in the boundary layer, 
is shown in figure 10, are given by 

and 

From thesc bulk equations, we deduce that 

These results are similar to those presented by McDougall (1989) ; however, he docs 
not consider the subsequent interior mixing. The interior return flow 
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From this return flow we deduce that the interior mixing equation has the form 

This model contains the key physical ingredients for the flow, but is much simpler to 
analyse. The flow it predicts is identical to  the boundary-layer-averaged flow given 
by the local boundary-layer equations in $5. 

A . l .  The eSfect of rotation 

We may generalize the above bulk boundary-layer analysis to include rotation. We 
focus upon the boundary-layer dynamics and assume that a suitable interior lateral 
flow may develop to  supply the boundary layer. This assumption merits further 
investigation owing to the constraints imposed by rotation, although Ivey (1987) 
reported that in his experiments on boundary mixing in a rotating vessel, the vertical 
mass flux was mainly effected in the boundary layer. Integrating the boundary-layer 
equations and assuming azimuthal symmetry, we have 

and 

a(Aww) -- a Z  - -COSBfW6, 

where w(z )  is the velocity (distance) up the slope, u(x) is the velocity (distance) 
perpendicular to the slope and w(y) is the velocity (distance) alongslope. Therefore, 
in addition to the upslope flow 

the rotation induces a zonal flow along the slope v given by 

w = (K6Pz)z/6Pz (A 1 1 )  

1 v = -( 1 -wu+6w-++A6sine aw P 
f cos 0s Po 

where u is determined by (A7) ,  (A lo), (A 1 1 ) .  
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